Nom	II.MATÉRIAUX POUR JOINTS	PJ
Nom	II.MATÉRIAUX POUR JOINTS	PJ

De nombreux matériaux sont possibles : papiers, fibres diverses, composites (base : métallique, verre, carbone, céramique...), métaux (pour pressions et températures élevées), élastomères et plastiques, etc.

Cas des élastomères et de certains plastiques : ils occupent une place de choix. La température et la compatibilité chimique avec le milieu sont les principaux paramètres pour les choisir.

Le nitrile, pour usages courants, et les élastomères fluorés, pour milieux plus agressifs et températures plus élevées (exemple : viton) sont les plus utilisés. Ils sont compatibles avec la plupart des huiles.

1. Remarques et recommandations

Beaucoup de joints sont prévus pour des systèmes hydrauliques ou des dispositifs contenant des huiles ou des graisses et doivent donc résister à celles-ci. La plupart des élastomères changent de volume ou "gonflent" en présence d'huile à base de pétrole.

La résistance à la traction et la dureté sont de bons indicateurs sur la résistance à l'abrasion et à l'extrusion, qualités essentielles pour les joints dynamiques.

L'utilisation d'un polymère non approprié affecte la performance de l'étanchéité.

Il est toujours possible de confondre des joints de même couleur, de même dimension mais dont les matières sont différentes, il faut donc toujours vérifier l'origine des joints.

Certaines applications (distribution et appareils à gaz : distribution d'eau potable, d'oxygène, industrie alimentaire...) exigent des joints homologués.

2. Désignation des élastomères

Désignation des principales familles d'élastomères Tableau 4

Elastomère de base	symbole ISO 1629	Indice prix (SBR= 1)	Exemples de marques commerciales
Caoutchouc naturel	NR	0,9	Natsyn
Caoutchouc isoprène	IR	1,3	Natsyn
Caoutchouc styrène butadiène	SBR	1,0	Buna S; Europrène; Phioflex;
Caoutchouc butadiène	BR		Buna CB; Diène; Budène
Caoutchouc isobutène isoprène (butyl)	IIR	1,5	Polysar Butyl; Esso Butyl
Variantes: chlorobutyl CIIR et bromobutyl BIIR			
Caoutchouc éthylène propylène	EPM		Buna AP; Keltan; Dutral
Caoutchouc éthylène propylène diène	EPDM	1,5	Santoprène; Keltan; Nordel; Dutral
Caoutchouc acrylonitrile butadiène	NBR	1,8	Perbunan; Buna N; Géoplast; Hycar
NBR carboxylé	XNBR		Duralip
NBR hydrogéné	HNBR	11,0	Duratemp; Therban; Zetpol; Tornac
Caoutchouc chloroprène	CR	2,5	Néoprène; Bayprène; Butador
Caoutchouc polyacrylate	ACM	3,5	Cyanacryl; Europrène; Hycar;
Caoutchouc polyéthylène chlorosulfoné	CSM	2,7	Hypalon
Caoutchouc fluorocarbone (fluorés)	FPM	30,0	Viton; Fluorel; Tecnoflon
Caoutchouc perfluoré (variante des FPM)	FFPM	5600,0	Kalrez; Simriz; Parofluor; zalak
Caoutchouc méthyl vinyl silicone	MVQ	8,5	Silopren; Rhodorsil; Silastic
Caoutchouc méthyl fluor silocone	MFQ	75,0	Silastic; (fluorosilicone)
Caoutchouc copolymère de l'épichlorhydrine	ECO	4,5	Gechron; Hydrin
Caoutchouc polyester-uréthane	AU	4,5	Vulkollan; Baytec; Adipan; Urepan;
Caoutchouc polyéther-uréthane	EU		Desmopan; Pelletane; Adiprène

Nom	II.MATÉRIAUX POUR JOINTS	PJ
-----	--------------------------	----

3. Caractéristiques des élastomères pour joints

Caractéristiques indicatives des principaux élastomères ou caoutchoucs pour joints Tableau 5

Elastomère de base	Symbole ISO 1629	Tempé- ratures limites*	Dureté (shore)	Principales compatibilités chimiques	Principales non- compatibilités	Observations et applications usuelles
Nitile- Butadiène	NBR	- 30 à 110℃	30 à 90	eau jusqu'à 70°C; air jusqu'à 90°C; Méthane et Ethane; hydrocarbures aliphatiques (1); huiles et graisses animales et végétales; fluides HFA, HFB, HFC;	cétones, acétones, acides acétiques, esters d'éthylène; acides forts; oxygène de l'air; trichloréthylène; fluides de frein glycols, ozone et lumière; HFD; Hydrocarb. aromatiques;	- pneumatique et hydraulique - bonne résistance à l'abrasion - HNBR (NBR hydrogéné), -20 à 150℃, supporte mieux, l'eau chaude, l'ozone et les agents atmosphériques
Fluorocar- bone FPM		-20 à 200℃	70 à 90	certains fluides HFD; hydrocarbures aliphatiques (1) et aromatiques (2); vide poussé; oxygène, ozone, lumière; huiles aux silicones, animales et végétales	acétone; cétones; acétate d'éthyle, alcalis, gaz d'ammoniaque, acide formique, acide acétique, vapeur surchauffée	- Large éventail d'application - bonne résistance à la chaleur - moins bon aux basses températures
Caoutchouc perfluoré	FFPM	-20 à 250℃	70 à 90	compatible avec presque tous les produits chimique; O ₂ , ozone et vieillissement	non compatibles avec les fluides contenant des combinaisons fluorés (Fréons)	- allie les propriétés des PTFE et celles des FPM - grande résistance à la chaleur et à l'usure
Ethylène- propylène	EPDM	-40 à 150℃	50 à 80	Eau et vapeur; nombreux acides; lessives, alcools, cétones, esters; O ₂ ozone, lumière	fluides à base d'huile minérale (huiles, graisses et carburants)	- étanchéité de fluides hydrauliques à base de phosphate-ester et des liquides à base de glycol (freins)
Caoutchouc butyl	IIR	-40 à 120℃	40 à 80	Eau chaude et vapeur; nombreux acides, solutions salées; alcools, cétones, esters; liquides de freins glycols; fluides HFC et HFD-R; O ₂ , ozone, lumière	Huiles et graisses minérales; carburants; hydrocarbures chlorurés	- Faible taux de perméabilité aux gaz (chambre à air) - bonnes propriétés isolantes à l'électricité - existe en version chloré (CIIR) avec une meilleure résistance à la déformation rémanente
Caoutchouc chloroprène	CR	-40 à 100℃	30 à 90	eau et solutions aqueuses à basse température; certaines huiles minérales; réfrigérants (ammoniaque, CO ₂ , Fréon)	hydrocarbures aromatiques (benzène) et chlorurés (trichloréthylène); cétone, ester, éther, cétones	- meilleure résistance à l'ozone au vieillissement que le NBR - bonne résistance à l'eau salée et aux produits chimiques - souvent utilisé avec les fluides réfrigérants
Polyu- réthane	AU EU	-30 à 80℃	65 à 100	huiles et graisses minérales (suivant additifs) et celles de silicone, ozone; eau (<50°C); vieillissement; propane, butane, fuels	cétone, ester, éther, alcool, liquide de frein glycol; eau chaude, vapeur; amines, alcalis, acides et bases; liquides aromatiques	- excellente résistance à l'abrasion, à la traction et une grande élasticité - bonne résistance à l'hydrolyse - perméabilité analogue à IIR

Nom				II.MATÉRIAU	JX POUR JOINTS		PJ	
Caoutchouc au silicone	Q MQ MVQ	-50 à 210℃	45 à 80	huiles moteurs et transmissions; huiles animales et végétales; fluides HFD-R et HFD-S, liquides à base de glycol; eau (<100℃); solutions salées diluées; ozone,	eau surchauffée; vapeur (>120°C); acides, alcalis; huiles et graisses au silicone; carburants; huiles minérales aromatiques; benzène, toluène; trichloréthylène	chale vieillis - bons physic neutre - faibl	s isolants et ologiquemer	et au sont nt e à la

l'abrasion

statiques

- pour applications

intempéries et

vieillissement

Compatibilité des principaux élastomères avec les huiles minérales et l'ozone de l'air Tableau 6

	Non résistant à l'huile minérale		Résistant à l'huile minérale		Excellente résistance à l'ozone		D'une faible à une bonne résistance à l'ozone			nce à la minérale 'ozone		
=	BR IIR IR NR	SBR EPDM EPM	CR NBR HNBR ACM FPM FFPM	AEM CSM FMQ ECO AU/EU	ACM CSM EPM FFPM MFQ AU/E U	AEM EPDM FPM MVQ ECO	bonne IIR HNBR	moyenn e CR	faible BR IR NBR NR	excellente ACM CSM MFQ AU/EU AEM FPM FFPM MFQ	moyen à bon HNBR CR	faible NBR

Compatibilité des principaux élastomères avec les "HUILES" synthétiques Tableau 7

Familles	Joints recommandés	Joints possibles	Joints à éviter			
Polyalpholéfines (PAO)	VMQ, FVMQ, FPM, ACM, EU, AU, PTFE, AEM	NBR, CR, CSM, T, ECO	SBR, IIR, IR, NR, EPDM			
Alkylats aromatiques	FPM, PTFE	NBR, ACM, T	SBR, CR, IIR, NR, IR, VMQ, CSM, EPDM, EU,			
Esters (diesters) organiques	VMQ, FVMQ, FPM, T, BR, PTFE	AU, EU, NBR, ACM, ECO	CR, NBR, IIR, EPDM, CSM, EAM,			
Esters phosphates	IIR, FPM, EPDM, PTFE	VMQ, FVMQ, EU/AU, T	NBR, SBR, CR, NR, IR, ACM, CSM			
Polyglycols	FPM, FVMQ, SBR, EPDM	NBR	ACM, CSM			
éthylène acrylique EAM; fluorosilicone FVMQ;, éthylène acrylique AEM, polysulfure T						

Températures maximales admissibles des principaux élastomères en fonction du milieu ambiant Tableau 8

	Huile minérale	Eau	Air
NBR	110°C	70°C	90°C
FPM	120°C	100°C	100°C
EPDM	non compatible	150°C	150°C
MVQ	150°C	100°C	210°C
MFQ	175°C	100°C	175°C
ACM	150°C	à éviter	150°C
CR	100°C	80°C	90°C

^{*} durée d'utilisation de 1000 heures environ dans un milieu compatible.

⁽¹⁾ Hydrocarbures aliphatiques: propane, butane, pentane, gaz naturel, huile de pétrole, huiles et graisses minérales, essence, gazole et fuels

⁽²⁾ Hydrocarbures aromatiques: benzène, toluène, supercarburant...